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Renormalization group recursion without proliferation of terms
in the ene-band Hubbard model
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Abhotmisd Tha ma- P Y (S, SRR N IR IR M I B L TY SRR D BU'Y
AUINFELL LT 1T Spall ICHOTIRAIZALIVH Z10UD DICCK TIEUoU 15 anaiysea vwe geuce tne
conditions for avosding the proliferation of coupiings in a fermion system like the one-band
Hubbard model We also extend the method for two and three dimensions

1. Introduction

Several years ago real space renormalization group (rsrc) methods were extensively
apphed to quantum lattice systems [1-7]. There are three main kinds of recursions
techniques: (1) the Niemejer-van Leeuwen method (see [21] for a critical analysis), (ii)
the Migdai-Kadanoff appreach [3]; (iii} the block method [1].

We are interested here in the study of fermion systems on a lattice in any dimeasion
of physical interest, d =1, 2,3. The Niemejer-van Leeuwen recursion has a great
amount of arbitrariness in the choice of renormalization transformation and is hardly
gencralizable to the fermion syrtems. The Migdal-Kadanoff method fails in describing
the ground state of the system, and produces proliferation of couplmgs for the fermion
systems even in one dimension [4]. The last one, the block technique, was originally
introduced similarly to a variational approach to ¢* theory in a lattice [1] This paper
is devoted to this technique.

The first systems analysed by mean of the block method were spin systems,
afterwards the technigque was generalized to fermion systems in one dimension [5-7].
This approach gives reasonable results mainly for the Ising model in a transverse field
and the Hubbard Hamiltonian, both 1n one dimension and at T =40, but fails in
describing T # 0 systems and it 1s difficult to generalize it to higher dimensions. Here
we give a brief outline of the RsrRG block method applied to the Hubbard model and
deduce the conditions under which the renormalized Hamiltonian has the same form
as the original one. By using these conditions we are able to define a weil-behaved
renormalization flux and keep constant the dimension of the parameter space, i.e no
spurious interactions will be created. We then extend the method to d =2, 3.

2. The block method

The Hubbard Hamiltonian 1s
H=H+H,+H, ==Y terc.tUYXnmn—u)n, {1

(ke
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where 1, is the nearest-neighbour hopping term, U is the local repulsive interaction
and g 15 the chemical poteniial. Let us assume that we know how to solve the
Hamiltonian (1) for a block « of size 59 where d is the dimension of the system, and
to obtain all the eigenvectors |¢,,) for this block.

We could try to rewrite (1) on this basis:

H=1Y [yl H |y (o (2)

where jy} =11, [¢..)-

There are, however, too many states, and our task is to project out a part of [¢)s,
both to diminish the degrees of freedom of the system and to obtain recurrence relations
between H and the projected part that we shall calt H'. To get this recurrence we keep
four of the eigenvectors of each block, |¢o.), and eliminate the rest We define in this
way a new Hamiltonian representing a system whose size has changed by a factor 51,

H'= P,HF, (3)

where P():Ewn"frlO)(le and |'I’c)=nu iﬁﬂnu)-

These are the traditional ‘recipes’ for the rsrG method. The problems appear when
we try to write (3) in 2 way analogous to {1). We will find terms of the type H, and
H!,, but the bopping term H; wiil not be, in general, equivaient to H,.

3. Choosing the basis |¢p, >

In orderto label the |y, )s we shall use the total number of electrons N, , = Z cptock.a s
the projection of total spin 8., =3 %L pioek (n,;—n,;) and the spatial symmetry I', Here
the I';s denote the irreducible representations of the point group under which H 1s
invanant, We shall use two other symmetries if necessary, the total spin 5% and the
guasi-spin Casimir operator Z~Z"1, where

ZT=Y velch- (4a)

We assume here a bipartite AB-type lattice, then we have v, = 1 for the A sites and
v, = —1 for the B sites, It 1s amusing to observe that we can wnte Z" into the block as

Z:=2:4dz‘1d;—*k,f {41))

where k= (k,, k,), m > {m, ), for example in the two-dimensional case; and the d, ,
operators diagonalize the H, term in the block. We can sce then how to construct
invariants of any band term in a lattice if it has an energy spectrum so that e(k)+
e(G+k)=0, which is a property of the AB-type lattices. The Z¥, Z~ and Z;=
I(N,~ N,), where N, is the number of sites, obey the commutations relations of
guasi-spin operators, and they can be seen as a generalization of the senionty§ to the
lattice case. We obtain for the Z-operators the following general relations:

[HZ)=(U-2u)Z" [N, Z7}=+2Z% [$%,2*1=0 (5

t Equaton (3} 15 1n fact the first-order term of the ‘exact’ H' = PoPHPP,= P[H,+ V+ V(1 -P,)V/
(E-Hy)+ 1P, where Vs the hopping interblocks See [5] for a more detailed analysis,

4 Novak and Zhang [8] rediscovered this symmetry

§ By defimtion the semorizy 15 the mumber of unpawed particles on a site The generalization to a sohd leads
to a shghtly different prcture because Z~|¢) =0, for example, does not ;mply necessarily that there are not
paired particles i 2 many-body state |t} (in the one-band Hubbard model parred particles means a
double-occupied site). See [9] and references therain,
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where 57 =X, ¢)i¢,; . The spectrum of Z-Z™ was obtained by Nowak [9]. For a fixed
S. and N,.< N, the eigenvalues of Z~Z" are

6y ={k +1)(N,~ N, +k) k=0,1, .. [iN.—|S]).

We restrict our analysis to a fixed-filling V,, and then we choose the two following

states 1n each block:

[Ne=Ny=1,5=8,,8.=8., Ty, B} =[0)a (6a)
ba
|NB= NU! S: = S:. ~%1 6k, rE! E!)u = “’r)u = c::L,O’)a

where the total spin S, quasi-spin ; (seniority), and the spatial symmetries are not
yet fixed. The energies E,, E., will be the lower energies of H, + H, compatible to the
fast choice of the symmetries. It seems natural to define two other states as

Zo 0% = |th. = ciielle s,
Sult Ve = 1a =250

in order to obtain a formal analogy to the one-electron states.

(6b)

4. Renormalizing parameters

Let us rewrite (1) as
ch HOQ+Z VQ.B:HQ'*' v
-3 af
here H, is the intrablock Hamiltoman and V., is the hopping term between nearest-

neighbour blecks « and B (see figure 1 for an example). What we want 1s to establish
a correspondence like

P,H,P,~ H!+H .+ K’ {7a)
Py,VP,» H], (7b)
For the (7a) part it 15 straightforward to get
PDH0P0=U'§n[,¢n;f—M"§’ n;,,+§ K. (8)
where
U=2E-E}+U w=E—Et+u K., =E —(No—1)u.

The kinetic term, P,VP,, does not transform so clearly. First it is interesting to
write the ¢, operators 1n a more appealing way,

o = 10 ol+sgn(~ol|o), (U] = e (1 =1 o)+ ol (9)

14

Y
[(—O—AHH —0O—1]

% B
Figure 1. A possible choice at d =1 The squares (circles) represent A {B) sites Vs the
hopping beiween nearest-neighbours blocks o and g
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and then assumisg a natural definition of the operators on the border of the block in
the subspace spanned by the |00, 1., ...

Colay=r, ch (1 =0l S} F+u, chonl .. (1o

Where the r,_, and v, are real nambers,

T

r.==al0le.{a)lo), =1 .
. leala)] . - an
7, o =sgn(~o) (ol (a1 =0,
the other matrnx elements vanish
We can then write (7b) more explicitly by usmg (10)

. 1] '
P() VPQ = z {(l‘,ﬂ ;;rla‘gr - rf"”avlﬂ e 1’1" rrrl,;, o + vl" rrua” nr)na.—o'nﬂ -
E AN RN -3

r+ o2

:r}n:;: -rr+ rlu r!rfB J]Cn’cch:r
(12)

r
+(U|u uri',, N, o )nn ot { LI X LT

I T I

It 1s clear that the three parentheses in the ths of (12) must cancel to get a hopping
part without spurious terms We now try to obtain the r, ., and u,  factors in our
model First it 1s useful to write some commutators,

[z, Cu]:"vnffg {134}
AN eql=nc]| {13b)
(87, enl=—c, (13¢)
[$7, cil=ch (13d)

which can be easily specified for a block. We calculate the matnx element of (13a}
{bearing in mind that we treat the operators in the block) between [0, and 1., using
the definitions (6} we obtain

e e = L (T1Z0cy|00, + v W (Pehi00. (14a)
We repeat the process with (13b), {13¢) and (134}

aldlealithe = V251000 — v, u U ef00., (14b)

{0l ho = = (01550,41000 + o (0]ealT, (14c)

w{lel0% = 1]en 52100, + (7[00, (14d)

It should be noted that for a single site we have (0|c,[{}. = (Olc,s1), = — (e 41D

and so on In order to obtain an almost fermionic behaviour we now require
0% 9%, 174 to satisfy

Z. o =0 (15a)

540%. 1100 =0 (15b)

Equation {15a) implies the choice of 8, = 8; .= N,— N,, and for (15b) we have

to choose 5=0, that 15, N, must be odd? The expression (12) may now be simplified

+ltis easy to see that i [Z7 2%, Z7)=2Z72, =» Z™|A, 8,)x]A, 8, where 8, = 8, + N, — N, I we restrain
the study 1o the case N, = N, then 8, =0 I we choose 0, _,= N, — N. then &} = 0. This 1s only possible for
N.=N_but N.=N,-2 and by hypothesss was N, < N, therefore N = N,—2 It 15 impossible then to
arnve to zero eigenvalue for 85 so Z 7|0}, must cancel For the spin case it 1s obvious that (155) mplies s =0.
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[€:3]

Figore 2 The two suitable block choices 1n a square lattice (a) There are only A-sites on
the border and we obtain a one-dimenstonai-hke behavicur (&) In this case we find two
types of sites on the border

P,vP,= ¥ AAMI-p, — v o v )0l 80y,

T, gt 5
-HV,“-—l)n'uﬂ,+(V,ﬂ—l)né_ﬁu-i-l}d:,c;,,, (16)
From (16} 1t 15 easier to analyse the different cases.

5. Oane-dimensional case

We can make two different choices for the blocks, with an even or odd number of
sites. For each of these blocks we have one site on the border. In the odd case the
baorder sites tn the same block (see figure 1) are always of the same type, Le. A-sites,
so we can put », = v, =1, and the resulting renormalized hopping is like the original
one. In the even case there are two different types of site on the border, and we obtain

PVB,= ¥ {—2nh_,t1)incan (17)
(e Bro

6. Two-dimensional case

There are two possible choices of blocks (see figure 2) to prevent prohiferation terms.
In the five-site blocks (figure 2{a)} all the border sites are of the same type, i.e. A-sites.
We therefore obtam the same behaviour 2s in the one-dimensional case. The block of
nine sites (figure 2(b)) has, however, two types of sites on the border, but it is not
difficult to eliminate the hopping between the B-sites if we choose a sutable spatial
symmetry for the |¢),s, so that

0ca{ Bl =0. (18)

The Hamiltoman (1) is invariant under C,, [10] and if we use the A, irreducible
representation for the |o),s and A, for the |0'),, 11", we obtain (18)

7. Three-dimensional case

Now, it 15 not possible to have several sizes of blocks as 1n one dimension, or to draw
two different shapes as in two dimensions. Il we want to preserve the number of
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Hamiltonian parameters in the H' and at the same time to pave completely a cubic
lattice, we have only one possible block choice: a cube of 3° = 27 sites. H is invariant
in three dimensions under the D,, group, and as in the two-dimensional case it 1s
possible to choose the completely symmetric irreducible representation of Dy, for the
|0%,, [{17. and the antisymmetric representation under plane reflexions for the |o),.5
to obtain condition (18).

8. Conclusion

We have analysed the rSRG block method 1n the one-band Hubbard model. We have
found the conditions under which the process is exact. The expression is exact here,
makes no reference to an analytical or numerical result but, instead, there is a formal
analogy between the original Hamiltoman and the renormalized one. We have shown
how to apply the method to d =1, 2, 3 systems. Particularly in the one-dimensional
case we have solved exactly the question of parity of the number of sit2s in each
block [5-7].
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