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A%.ac:. The rei: space ieiioimdiiaii~n gioiip bioi-ir meihad is snaiyred 'We deduce the 
conditionr for avoiding [he proliferatton of couplings #n a fermion system like the one-band 
Hubbard model We also extend the method forrwo and three dimensions 

1. Introduction 

Several years ago rea! space renormalization group (nsna) methods were extens!ve!y 
applied to quantum lattice systems [l-71. There are three main kinds of recursions 
techniques: (if the Niemejer-van Leeuwen method (see [2] for a critical snalysis), (ii) 
the Migdal-Kadanoff approach [3]; (iii) the block method [I]. 

We are interested here in the study of fermion systems on a lattice in any dimension 
of physical interest, d = 1,2,3. The Niemejer-van Leeuwen recursion has a great 
amount of arhitranness in the choice of renormalization transformation and is hardly 
pGrrr,a.n'a"m L U  b u r  LrllllLVll "y'LrnL3. 1.15 '""p"~l-hp"L"uAZ L I I ~ L , , U U  ,as13 111 "C"LL1"U'E. 

the ground state of the system, and produces proliferation of couplings for the rermion 
systems even in one dimension [4]. The last one, the block technique, was originally 
introduced similarly to a variational approach to (D* theory in a lattice [l]  This paper 
is devoted to this technique. 

The first systems analysed by mean of the block method were spin systems, 
afterwards the technique was generalized to fermion systems in one dimension [5-71. 
This approach gives reasonable results mainly for the king model in a transverse field 
and the Huhhard Hamiltonian, both in one dimension and at T=O, hut fails in 
describing T # 0 systems and it is difficult to generalize it to higher dimensions. Here 
we give a brief outline of the RSRC block method applied to the Hubbard model and 
deduce the conditions under which the renormalized Hamiltonian has the same form 
as the original one. By using these conditions we are able to define a well-behaved 
renormalization flux and keep constant the dimension of the parameter space, i.e no 
spurious interactions will he created. We then extend the method to d =2,3 .  

.^_^_ - .L-L , .  .-d.-c---:.- TI. **:_A^, ,,...>---a-.~.L-., c-:,. .- A----:'-...- 

2. The block method 

The Hubbard Hamiltonian is 

H = H,+ H.+ H, = - r,c:,c,,+ Lrx  nz,n,L-F n., (1) 
(a,)." 5- 

0305-4470/9l/l22691+06S03 50 Q 1991 1OP Publishing Ltd 2691 



2692 J Pkz-Conde 

where I ~ ,  is the nearest-neighbour hopping term, U is the local repulsive interaction 
and p IS the chemical potential. Let us assume that we know how to solve the 
Hamiltonian (1) for a block n of size sd where d is the dimension of the system, and 
to obtain all the eigenvectors lq,,) for this block. 

We could try to rewrite (1) on this basis: 
H =  Z I$)(dHId~')(8'1 (2) *,* 

where i$)=n, i%). 
There are, however, too many %ate$, and our task is to project out a part of I$)s. 

both to dimbish the degrees of freedom of the system and to obtain recurrence relations 
between H and the projected part that we shall call H'. To get this recurrence we keep 
four of the eigenvectors of each block, lqoa), and eliminate the rest We define in this 
way a new Hamiltonian representing a system whose size has changed by a factor s?, 

where Pa=Z&oa)($o~ and I$d=n, /qom). 
These are the traditional 'recipes' for the RSRG method. The problems appear when 

we try to write (3) in a way analogous to (1). We will find terms of the type HI and 
H L ,  but the hopping term H :  will not be, in general, equivaient to H,.  

H ' =  PoHPo (3) 

3. Choosing the basis 

In order to label the lq,,)s we shall use the total number of electrons Ne," =I;,,,,,,,,, n,,,, 
the projection of total spin S, ,  = f E,,,,,,, (n,,l - n,J and the spatial symmetry r, Here 
the r,s denote the irreducible representations of the point group under which H IS 

invanant. We shall use two other symmetries if necessary, the total spin S' and the 
quasi-spin Casimir operator Z-Z+?, where 

Z' = U,.;.;. (4a) 

We assume here a bipartite AB-type lattice, then we have U, = 1 for the A sites and 
U, = - 1  for the B sites. It is amusing to observe that we can write Zt into the block as 

Z : = x d t L d : - k r  (46) 

where k =  (k, ky) ,  . i ~  +(T, r), for example in the two-dimensional case; and the dkD 
operators diagonalize the H, term in the block. We can see then how to construct 
invariants of any band term in a lattice if it has an energy spectrum so that e ( k ) +  
&(G+k)=O,  which is a property of the AB-type lattices. The Z+,  2- and Z,= 
$ (Ne-  NJ, where N, is the number of sites, obey the commutations relations of 
quasi-spin operators, and they can be seen as a generalization of the seniority5 to the 
lattice case. We obtain for the Z-operators the following general relations: 

I. 

[ H , Z ' ] = ( U - Z F ) Z +  [ N e ,  2'1 =*z* [s*,z*l=o ( 5 )  

iEquaiion (3) IS in fact the first-order term of the 'exact' H'=PoPHPPo=P,[H,+V+V(I-P,)V/ 
( E  - Ho)+ 
t Nwak and Zhang [SI rediscovered this symmetry 
5 By definition the scnionry IS the number of unpaired pamcle\ on a site The generalrration to a solid leads 
Io a rlightly different picture because Z-l#)=O, for example, docs not mply necerranly that there are not 
paired panicles in a manybody state I$) (m the one-band Hubbard model paved pantcles means a 
double-occupted sae). See [91 and references Lherem. 

]Pm where V IS the hopping interblocks See [SI far a more detailed analysis. 
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where S'= Z, c:c,,. The spectrum of Z-Z' was obtained by Ncwak [9]. For a fixed 
S. and Ne.;- N ,  the eigenvalues of Z-Z' are 

ex = ( k  t 1)( N, - Ne+ k )  k =0,1, . . , [$Nc-lSzlJ. 

We restrict our analysis to a fixed-filling No,  and then we choose the two following 
states in each block 

[ N , = N , - I , s - s , ,  .sZ=sz,,r,, ~ , ) , , = [ o ) ~  
( 6 a )  

IN,=&, S,=Sz, - f .  e,, r.. E?)- E I&'),, = cb;[O'), 

where the total spin S , ,  quasi-spin 4 (seniority), and the spatial syinmetries are not 
yet fixed. The energies E,, E., will be the lower energies of H. + H, compatible to the 
last choice of the symmetnes. It sccms natural to define two other states as 

,+ I +  Z'IO'), = lb?')" = c*,cm,l@!tt 

S 3 ' ) "  = 1" = c:lo')u 

in order to obtain a formal analogy to the one-electron states. 

( 6 6 )  

4. Renormalizing parameters 

Let us rewrite (1) as 

H =z H , , + z  Vap = H,+ V 
c '.e 

here Ho is the intrablock Hamiltonian and Vap is the hopping term between nearest- 
neighbour blocks a and p (see figure 1 for an example). What we want i s  to establish 
a correspondence like 

POHOP,+ H : +  H L C K '  ( 7 0 )  

P,VP,+H:.  ( 7 b )  

PoHoPo= U ' x  n:,inhi-p' x nb,+x K l  (8) 

For the ( 7 a )  part it is straightforward to get 

U " ,T D 

where 

U'= 2(E,  -E,)+ U p'= E,  - El+p K b  = E ,  - ( N o - l ) p .  

The kinetic term, P,,VP,, does not transform so clearly. First it is interesting to 
write the c,, operators in a more appealing way, 

c,, =lo),,(u/+sgn(-u)Iu),,(&TI= c , A ~ - n , . ~ ) + c , ~ n , - ~ ,  ( 9 )  

oi P 
Figure 1. A poisible choice a d = 1 fixe squarer (circles) represent A ( 8 )  sltes V IS the 
hoppmg between nearest-neighbours blocks n and P 
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and then assumit:g a natural definition of the operators on the border of the block in 
the subspace spanned by the b'L, iL')=, . . . 

c , J m ) = r  c 2 I  - n L ) + %  ,cb.,n: ..". (IO) 

Where the r,+* and v ~ " . ~  are real numbers, 

r.. = , , ( ~ ' l c , ~ ( ~ ) I ~ ' ) ~ ~  = r:"," 

0,- =sgn(--) m ( - u ' k A m ) I i T ' ) e  = L'; 

the other matrix elements vanish 
We cdn then write (76) more explicitly by using ( I O )  

+(u,,,,,~~,,"-~,,,"r,~~)~~.,,+~r,,,~v,,~,.-r, .._" r ," , , )n ;  ~ " + r , , ,  , r r , 8 u l c 2 ~ , .  
(121 

It  IS clear that the three parentheses in the rhs of (12) mubt cancel to get a hopping 
part without spurious terms We now try to obtain the r,,, ,, and U,.,., factors in our 
model First it is useful to write some commutators, 

[Z', c,,] = -u,c; ( 1 3 ~ 1 )  

which can be easily specified for a block. We calculate the matrix element of (13a) 
(bearing in mind that we treat the operators in the block) between and IT')-, using 
the definitions (6) we obtain 

( 1 4 ~ )  ~(T'Ic,LILY)~ =-(?'IZ:G&')~ + yr. e(T'IcTiIO')m 

We repedt the process with (13b), (13c) and (13d) 

m(i'lc&T'L = "(L'lz:cpllO')" -U,,, w(L'lc~lio)" (146) 

e(o'lc,&')w = -,(WtcItlo?, + a(olc,,l?')m ( 1 4 ~ )  

d i ' l C . J i O ' L  =Al'lC;S:l~)<, +w(T'lc:lo')m. f14dl 

It should be noted that for a single site we have ,iOIc,&), = ,(Olc&), = - , (LIC&T)~ 
and so on In order to obtain an almost fermionic behaviour we now require 
P)", b')", lit'), to satisfy 

ZJU')" =o  ( 1 5 ~ 1 )  

S i t  lo?", ILT'L) = 0 (156) 
Equation (15a) implies the choicr of 8, =SA_,= N , - N , ,  and for (156) we have 

to choose S = O ,  that IS, No must be odd: The expression (12) may now be simplified 

,?-/A, e,) 111, 6 ; )  uherr 6; = 8, + Nc - N, If ae restram 
theitudylolhecase N.aN.then & a 0  Ifuechoore e,=,=N,-N,then R;=O.Theiranlyposr,biefor 
Nc= N. hut N:= N.-2 and by hypothem was N." N,, therefore N:" N,-2 11 IS mpors!hle then to 
arnveloieroeigenraluefor8; roZ-lo7, mustcaneel Fortherpineaseiteobviousthat (ISbj~mpIrers=O. 

If *I ear? to see char If [Z-Z', 2-1 = 22-2, 
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141 

Figure 2 The two iuitdble black choaces ~n a q u a r e  laitice la1 Thers are only A-alter on 
the border and we obtain a one-dm"itonal-lAe behaviour f b l  In thir caqe w e  end two 
types of I ~ S  on the border 

5. One-dimensional case 

We can make two diiferent choices for the blocks, with an even or odd number of 
sites. For each of these blocks we have one site on the border. In the odd case the 
border sites in the same block (see figure 1) are alwAys of the same type, i.e. A-sites, 
so we can put ut. = U,* = 1, and the rzsulting renormdlized hopping is like the original 
one. In the even case there are two dltterent types of s!te on the border, and we obtain 

P,VP,= I: ( - 2 4  -,+ 1 t;::,cg, (17) 
< . P W  

6. Two-dimensional case 

There are two possible choices of blocks (see figure 2 )  io prevent proliferation terms. 
In the five-sire blocks (figure 2 t a ) )  all the border sites are of the same type, i.e. A-sites. 
We therefore obtain the same behaviour BE in the one-dimensional case. The block of 
nine sites (figure 2(b ) )  has, however, two types of sites on the border, but it is not 
dtficult to eliminate the hopping between the 9-sites if we choose a suitable spatial 
symmetry for the /u')*s, so that 

m(Vlc,AB)b')m = 0. (18) 

The Hamiltonian (1) is invariant under C., [IO] and if we use the A2 irreduclble 
representation for the lu'),,s and A, for the 1LT')- we ohtam (18) 

7. Three-dimensional case 

Now, it IS not possible to have several sizes of blocks as in one dimension, or to draw 
two different shapes as in two dimensions. If we want to preserve the number of 
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Hamiltonian parameters in the H' and at the same time to pave completely a cubic 
lattice, we have only one possible block choice: a cuhe of 3'=27 sites. H is invariant 
in three dimensions under the Dlh group, and as in the two-dimensional case it IS 

possible to choose the completely symmetric irreducible representation of Dlh for the 
IO'L, lit'). and the antisymmetric representation under plane reflexions for the I d a s  
to obtain condition (18). 

8. Conelusion 

We have analysed the RSRC block method in the one-band Hubbard model. We have 
found the conditions under which the process is exact. The expression is exact here, 
makes no reference to an analytical or numerical result but, instead, there is a formal 
analogy between the original Hamiltonian and the renormalized one. We have shown 
how to apply the method to d = 1 , 2 , 3  systems. Particularly in the one-dimensional 
case we have solved exactly the question of parity of the number of sites in each 
block [5-71. 
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