Renormalization group recursion without proliferation of terms in the one-band Hubbard model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 242691
(http://iopscience.iop.org/0305-4470/24/12/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 11:16

Please note that terms and conditions apply.

Renormalization group recursion without proliferation of terms in the one-band Hubbard model

J Pérez-Conde
Laboratore de Physique des Solides, Unversté Paris-Sud, Orsay 91405, France

Received 18 December 1990

Abstract

The real space renormahzation group bleck niethod is añatysed We deduce the conditions for avoiding the prohferation of couplings in a fermion system like the one-band Hubbard model We also extend the method for two and three dimensions

1. Introduction

Several years ago real space renormalization group (RSRG) methods were extensively applied to quantum lattice systems [1-7]. There are three main kınds of recursions techniques: (1) the Niemejer-van Leeuwen method (see [2] for a critical analysis), (ii) the Migdal-Kadanoff approach [3]; (iii) the block method [1].

We are interested here in the study of fermion systems on a lattice in any dimension of physical interest, $d=1,2,3$. The Niemejer-van Leeuwen recursion has a great amount of arbitranmess in the choice of renormalization transformation and is hardly generalizable to the femmion syftems. The Migdal-Kadanoff method fails in describing the ground state of the system, and produces proliferation of couplings for the fermion systems even in one dimension [4]. The last one, the block technique, was originally introduced similarly to a variational approach to φ^{4} theory in a lattice [1] This paper is devoted to this technique.

The first systems analysed by mean of the block method were spin systems, afterwards the technıque was generalized to fermion systems in one dimension [5-7]. This approach gives reasonable results mainly for the Ising model in a transverse field and the Hubbard Hamiltonian, both in one dimension and at $T=0$, but tails in describing $T \neq 0$ systems and it is difficult to generalize it to higher dimensions. Here we give a brief outline of the rsrg block method applied to the Hubbard model and deduce the conditions under which the renormalized Hamiltonian has the same form as the original one. By using these conditions we are able to define a well-behaved renormalization flux and keep constant the dimension of the parameter space, i.e no spurious interactions will be created. We then extend the method to $d=2,3$.

2. The block method

The Hubbard Hamiltonian is

$$
\begin{equation*}
H=H_{t}+H_{u}+H_{\mu}=-\sum_{\langle, j\rangle, \sigma} t_{y} c_{l \sigma}^{+} c_{j \sigma}+U \sum_{\imath} n_{2 \mid} n_{t \mid}-\mu \sum_{\imath, \sigma} n_{I \sigma} \tag{1}
\end{equation*}
$$

where $t_{i j}$ is the nearest-neighbour hopping term, U is the local repulsive interaction and μ is the chemical potential. Let us assume that we know how to solve the Hamiltonian (1) for a block α of size s^{d} where d is the dimension of the system, and to obtain all the eigenvectors $\left|\varphi_{i \alpha}\right\rangle$ for this block.

We could try to rewrite (1) on this basis:

$$
\begin{equation*}
H=\sum_{\psi, \psi^{\prime}}|\psi\rangle\langle\psi| H\left|\psi^{\prime}\right\rangle\left\langle\psi^{\prime}\right| \tag{2}
\end{equation*}
$$

where $|\psi\rangle=\Pi_{\alpha}\left|\varphi_{t a}\right\rangle$.
There are, however, too many states, and our task is to project out a part of $|\psi\rangle \mathrm{s}$, both to diminish the degrees of freedom of the system and to obtain recurrence relations between H and the projected part that we shall call H^{\prime}. To get this recurrence we keep four of the elgenvectors of each block, $\left|\varphi_{0 \alpha}\right\rangle$, and eliminate the rest We define in this way a new Hamiltonian representing a system whose size has changed by a factor $s \dagger$,

$$
\begin{equation*}
H^{\prime}=P_{0} H P_{0} \tag{3}
\end{equation*}
$$

where $P_{0}=\Sigma_{\psi_{0}}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|$ and $\left|\psi_{0}\right\rangle=\Pi_{\alpha}\left|\varphi_{0 \alpha}\right\rangle$.
These are the traditional 'recipes' for the rSRG method. The problems appear when we try to write (3) in a way analogous to (1). We will find terms of the type H_{u}^{\prime} and H_{μ}^{\prime}, but the hopping term H_{t}^{\prime} will not be, in general, equivaient to H_{t}.

3. Choosing the basis $\left|\varphi_{0 \alpha}\right\rangle$

In order to label the $\left|\varphi_{0 \alpha}\right\rangle s$ we shall use the total number of electrons $N_{e, \alpha}=\Sigma_{\text {t } \in \text { Block, } \sigma} n_{t, \sigma}$, the projection of total spin $S_{z, \alpha}=\frac{1}{2} \Sigma_{t \in \text { Block }}\left(n_{t, \dagger}-n_{t, \downarrow}\right)$ and the spatial symmetry $\Gamma_{,}$Here the Γ_{1} d denote the irreducible representations of the point group under which H is invariant. We shall use two other symmetries if necessary, the total spin S^{2} and the quasi-spin Casimir operator $Z^{-} Z^{+}+$, where

$$
\begin{equation*}
Z^{+}=\sum_{1} \nu_{\imath} c_{14}^{+} c_{1 \uparrow}^{+} . \tag{4a}
\end{equation*}
$$

We assume here a bipartite AB-type lattice, then we have $\nu_{r}=1$ for the A sites and $\nu_{1}=-1$ for the B sites. It is amusing to observe that we can write Z^{+}into the block as

$$
\begin{equation*}
Z_{\alpha}^{+}=\sum_{k} d_{k, \downarrow}^{+} d_{\pi-k, \uparrow}^{+} \tag{4b}
\end{equation*}
$$

where $k=\left(k_{x}, k_{y}\right), \pi \rightarrow(\pi, \pi)$, for example in the two-dimensional case; and the $d_{k, \sigma}$ operators diagonalize the H_{i} term in the block. We can see then how to construct invariants of any band term in a lattice if it has an energy spectrum so that $\varepsilon(k)+$ $\varepsilon(G+k)=0$, which is a property of the AB-type lattices. The Z^{+}, Z^{-}and $Z_{3}=$ $\frac{1}{2}\left(N_{\mathrm{e}}-N_{\mathrm{s}}\right)$, where N_{s} is the number of sites, obey the commutations relations of quasi-spin operators, and they can be seen as a generalization of the seniorty§ to the lattice case. We obtain for the Z-operators the following general relations:

$$
\begin{equation*}
\left[H, Z^{+}\right]=(U-2 \mu) Z^{+} \quad\left[N_{e}, Z^{ \pm}\right]= \pm 2 Z^{ \pm} \quad\left[S^{ \pm}, Z^{ \pm}\right]=0 \tag{5}
\end{equation*}
$$

\dagger Equaton (3) is in fact the first-order term of the 'exact' $H^{\prime}=P_{0} P H P P_{0}=P_{0}\left[H_{0}+V+V\left(1-P_{0}\right) V /\right.$ $\left.\left(E-H_{0}\right)+\right] P_{0}$ where V is the hopping interblocks See [5] for a more detailed analysis, \ddagger Novak and Zhang [8] rediscovered this symmetry
§ By defintion the semority is the number of unpared particles on a ste The generalization to a sold leads to a slightly different picture because $Z^{-}|\psi\rangle=0$, for example, does not imply necessarily that there are not parred particles in a many-body state $\mid \psi$) (in the one-band Hubbard model parred particles means a double-occupied stte). See [9] and references therein.
where $S^{+}=\Sigma_{1} c_{i t}^{+} c_{13}$. The spectrum of $Z^{-} Z^{+}$was obtained by Nowak [9]. For a fixed S_{z} and $N_{\mathrm{e}} \leqslant N_{\mathrm{s}}$ the eigenvalues of $Z^{-} Z^{+}$are

$$
\theta_{k}=(k+1)\left(N_{\mathrm{s}}-N_{\mathrm{e}}+k\right) \quad k=0,1, \ldots,\left[\frac{1}{2} N_{\mathrm{e}}-\left|S_{\mathrm{z}}\right|\right] .
$$

We restrict our analysis to a fixed-filing N_{0}, and then we choose the two following states in each block:

$$
\begin{align*}
& \left|N_{\mathrm{e}}=N_{0}-1, S-S_{1}, S_{z}=S_{z_{1}}, \Gamma_{1}, E_{1}\right\rangle_{\alpha}=\left|0^{\prime}\right\rangle_{\alpha} \\
& \left|N_{\mathrm{e}}=N_{0}, S_{z}=S_{z_{1}}-\frac{1}{2}, \theta_{k}, \Gamma_{2}, E_{3}\right\rangle_{\alpha} \equiv\left|\downarrow^{\prime}\right\rangle_{\alpha}=c_{\alpha l}^{\prime+}\left|0^{\prime}\right\rangle_{\alpha} \tag{6a}
\end{align*}
$$

where the total spin S_{1}, quasi-spin θ_{k} (seniority), and the spatial symmetries are not yet fixed. The energies E_{1}, E_{2}, will be the lower energies of $H_{u}+H_{r}$ compatible to the last choice of the symmetrtes. It scems natural to define two other states as

$$
\begin{align*}
& Z_{\alpha}^{+}\left|0^{\prime}\right\rangle_{\alpha}=|\downarrow \uparrow\rangle_{\alpha}=c_{\alpha \downarrow}^{++} c_{\alpha \dagger}^{\prime+}|C\rangle_{\alpha \alpha} \\
& S_{\alpha|\downarrow|}^{+}| \rangle_{\alpha}^{\prime}=\left|\uparrow^{\prime}\right\rangle_{\alpha}=c_{\alpha+\mid}^{\prime+}\left|0^{\prime}\right\rangle_{\alpha} \tag{6b}
\end{align*}
$$

in order to obtain a formal analogy to the one-electron states.

4. Renormalizing parameters

Let us rewrite (1) as

$$
H=\sum_{\alpha} H_{0 \alpha}+\sum_{\alpha \beta} V_{\alpha \beta}=H_{0}+V
$$

here H_{0} is the intrablock Hamiltonan and $V_{\alpha \beta}$ is the hopping term between nearestneighbour blocks α and β (see figure 1 for an example). What we want is to establish a correspondence like

$$
\begin{align*}
& P_{0} H_{0} P_{0} \rightarrow H_{u}^{\prime}+H_{\mu}^{\prime}+K^{\prime} \tag{7a}\\
& P_{0} V P_{0} \rightarrow H_{t}^{\prime} . \tag{7b}
\end{align*}
$$

For the (7a) part it is stratghtforward to get

$$
\begin{equation*}
P_{0} H_{0} P_{0}=U^{\prime} \sum_{\alpha} n_{\alpha i}^{\prime} n_{\alpha \uparrow}^{\prime}-\mu^{\prime} \sum_{\alpha \sigma} n_{\alpha \sigma}^{\prime}+\sum_{\alpha} K_{\alpha}^{\prime} \tag{8}
\end{equation*}
$$

where

$$
U^{\prime}=2\left(E_{1}-E_{2}\right)+U \quad \mu^{\prime}=E_{1}-E_{2}+\mu \quad K_{\alpha}^{\prime}=E_{1}-\left(N_{0}-1\right) \mu
$$

The kinetic term, $P_{0} V P_{0}$, does not transform so clearly. First it is interesting to write the $c_{t \sigma}$ operators in a more appealing way,

$$
\begin{equation*}
c_{t \sigma}=|0\rangle_{u}\langle\sigma|+\operatorname{sgn}(-\sigma)|\sigma\rangle_{u}\langle\downarrow \uparrow|=c_{t \sigma}\left(1-n_{1-\sigma}\right)+c_{t \sigma} n_{t-\sigma} \tag{9}
\end{equation*}
$$

Figure 1. A possible chotce at $d=1$ The squares (circles) represent $\mathrm{A}(\mathrm{B})$ sites V is the hopping between nearest-neighbours blocks α and β
and then assumin:g a natural defintion of the operators on the border of the block in the subspace spanned by the $\left|0^{\prime}\right\rangle_{\alpha},\left|\downarrow^{\prime}\right\rangle_{\alpha}, \ldots$

$$
\begin{equation*}
c_{\text {Irf }}(\alpha)=r_{r a, r c} c_{r a r}^{\prime}\left(1-n_{\alpha-\sigma}^{\prime}\right)+v_{t_{\alpha} \sigma} c_{a r r}^{\prime} n_{\alpha r-\sigma}^{\prime} \tag{10}
\end{equation*}
$$

Where the $r_{i_{a}, \sigma}$ and $v_{\mathrm{i}_{a}, \sigma}$ are real numbers,

$$
\begin{align*}
& r_{\mathrm{t}_{\mathrm{G} \sigma} \sigma}={ }_{\alpha}\left\langle 0^{\prime}\right| c_{r \sigma}(\alpha)\left|\sigma^{\prime}\right\rangle_{\alpha}=r_{\mathrm{t}_{a}, \sigma}^{\top} \tag{11}\\
& v_{\mathrm{l}_{\mathrm{l}} \sigma}=\operatorname{sgn}(-\sigma)_{\alpha}\left\langle-\sigma^{\prime}\right| c_{k \sigma}(\alpha)\left|\downarrow \dagger^{\prime}\right\rangle_{\alpha}=v_{r \sigma \sigma}^{-}
\end{align*}
$$

the other matrix elements vanish
We can then write ($7 b$) more explicitly by using (10)

It is clear that the three parentheses in the rhs of (12) must cancel to get a hopping part without spurious terms We now try to obtain the $r_{t_{0}, r}$ and $v_{t_{a}, r}$ factors in our model First it is useful to write some commutators,

$$
\begin{align*}
& {\left[Z^{+}, c_{t!}\right]=-\nu_{1} c_{t!}^{+}} \tag{13a}\\
& {\left[Z^{+}, c_{i t}\right]=\nu_{1} c_{t \downarrow}^{+}} \tag{13b}\\
& {\left[S^{+}, c_{i \uparrow}\right]=-c_{1!}} \tag{13c}\\
& {\left[S^{+}, c_{t \downarrow}^{+}\right]=c_{2 t}^{+}} \tag{13d}
\end{align*}
$$

which can be easily specified for a block. We calculate the matrix element of ($13 a$) (bearing in mind that we treat the operators in the block) between $\left|0^{\prime}\right\rangle_{x}$ and $\left|{ }^{\prime}\right\rangle_{\alpha}$, using the definitions (6) we obtain

$$
\begin{equation*}
\left.{ }_{\alpha}\left\langle\hat{\vartheta}^{\prime}\right| c_{\downarrow}\left|\| \uparrow^{\prime}\right\rangle_{\alpha}={ }_{\alpha}\left\langle\uparrow^{\prime}\right| Z_{\alpha}^{+} c_{\tau}| | 0^{\prime}\right\rangle_{\alpha}+\nu_{t_{0} \alpha}\left\langle\hat{\vartheta}^{\prime}\right| c_{, \mid}^{+}\left|0^{\prime}\right\rangle_{\alpha} \tag{14a}
\end{equation*}
$$

We repeat the process with ($13 b$), (13c) and (13d)

$$
\begin{align*}
& { }_{\alpha}\left\langle\downarrow^{\prime}\right| c_{t}\left|\downarrow \uparrow^{\prime}\right\rangle_{\alpha}={ }_{\alpha}\left\langle\downarrow^{\prime}\right| Z_{\alpha}^{+} c_{i t}\left|0^{\prime}\right\rangle_{a}-\nu_{v_{\alpha} \alpha}\left\langle\downarrow^{\prime}\right| c_{t, j}^{+}\left|0^{\prime}\right\rangle_{\alpha} \tag{14b}\\
& \left.{ }_{\alpha}\left\langle 0^{\prime}\right| c_{t}\left|{ }^{\prime}\right\rangle^{\prime}\right\rangle_{\sigma}=-{ }_{\alpha}\left\langle 0^{\prime}\right| S_{\alpha}^{+} c_{i} \mid 00_{\alpha}+{ }_{\alpha}\left\langle 0^{\prime}\right| c_{1}\left|\uparrow^{\prime}\right\rangle_{\alpha} \tag{14c}\\
& \left.{ }_{\alpha}\left\langle\downarrow^{\prime}\right| c_{, ~}\left|0^{\prime}\right\rangle_{\alpha}={ }_{\alpha} \chi^{\prime}\left|c_{i \downarrow}^{+} S_{\alpha}^{-}\right| 0^{\prime}\right\rangle_{\alpha}+{ }_{\alpha}\left\langle\uparrow^{\prime}\right| c_{i}^{+}\left|0^{\prime}\right\rangle_{\alpha} . \tag{14d}
\end{align*}
$$

It should be noted that for a single site we have $\left.{ }^{\prime}\langle 0| c_{2}|\downarrow\rangle_{t}=,\langle 0| c_{r}|1\rangle\right\rangle_{,}=-,\langle\downarrow| c_{r}|\downarrow \uparrow\rangle_{2}$ and so on In order to obtain an almost fermionic behaviour we now require $\left|0^{\prime}\right\rangle_{\alpha},\left|\sigma^{\prime}\right\rangle_{\alpha},\left|\downarrow \uparrow^{\prime}\right\rangle_{\alpha}$ to satısfy

$$
\begin{align*}
& Z_{\alpha}^{-}\left|\sigma^{\prime}\right\rangle_{\alpha}=0 \tag{15a}\\
& S_{\alpha x}^{-}\left(\left|0^{\prime}\right\rangle_{\alpha},\left|\ell \uparrow^{\prime \prime}\right\rangle_{\alpha}\right)=0 \tag{15b}
\end{align*}
$$

Equation (15a) implies the choice of $\theta_{h}=\theta_{h=0}=N_{\mathrm{s}}-N_{\mathrm{e}}$, and for (15b) we have to choose $S=0$, that is, N_{0} must be odd t The expression (12) may now be simplified

[^0]

(b)

Figure 2 The two suttable block choices in a square lattice (a) There are onty A-sites on the border and we obtan a one-dimenstonal-hhe behavious (b) In this case we find two types of stites on the border

If we put $r_{r_{c} \sigma}=\lambda_{1_{d}}, v_{L_{\alpha} \sigma}=\nu_{l_{a}} \lambda_{t_{2}}$.

$$
\begin{align*}
& \left.+\left(\nu_{t_{\alpha}}-1\right) n_{\alpha-v}^{\prime}+\left(\nu_{\nu_{\beta}}-1\right) n_{\beta,-v}^{\prime}+1\right] c_{r v v}^{\prime+} c_{\beta \sigma}^{\prime} \tag{16}
\end{align*}
$$

From (16) it is easier to analyse the different cases.

5. One-dimensional case

We can make two different choices for the blocks, with an even or odd number of sites. For each of these blocks we have one site on the border. In the odd case the border sites in the same block (see figure 1) are always of the same type, i.e. A-sites, so we can put $\nu_{t_{\alpha}}=\nu_{t_{\beta}}=1$, and the resulting renormalized hopping is like the original one. In the even case there are two different types of site on the border, and we obtain

$$
\begin{equation*}
P_{0} V P_{\sigma}=\sum_{\langle\alpha \beta, \sigma}\left(-2 n_{\beta-\omega}^{\prime}+1\right) \varepsilon_{\alpha \sigma}^{2+} c_{\beta r}^{\prime} \tag{17}
\end{equation*}
$$

6. Two-dimensional case

There are two possible choices of blocks (see figure 2) to prevent prohferation terms. In the five-sire blocks (figure $2(a)$) all the border sites are of the same type, i.e. A-sites. We therefore obtain the same behaviour as in the one-dimensional case. The block of nine sites (figure $2(b)$) has, however, two types of sites on the border, but it is not difficult to eliminate the hopping between the B-stes if we choose a suitable spatial symmetry for the $\left|\sigma^{\prime}\right\rangle_{\alpha}$ s, so that

$$
\begin{equation*}
{ }_{\alpha}\left\langle 0^{\prime}\right| c_{r \sigma}(B)\left|\sigma^{\prime}\right\rangle_{\alpha}=0 . \tag{18}
\end{equation*}
$$

The Hamiltoman (1) is invariant under $\mathrm{C}_{2 v}$ [10] and if we use the A_{2} irreducible representation for the $\left|\sigma^{\prime}\right\rangle_{\alpha}$ s and A_{i} for the $\left|0^{\prime}\right\rangle_{\alpha},\left|\downarrow \uparrow^{\prime}\right\rangle_{\alpha}$ we obtain (18)

7. Three-dimensional case

Now, it is not possible to have several sizes of blocks as in one dimension, or to draw two different shapes as in two dimensions. If we want to preserve the number of

Hamitonian parameters in the H^{\prime} and at the same time to pave completely a cubic lattice, we have only one possible block choice: a cube of $3^{3}=27$ sites. H is invariant in three dimensions under the $\mathrm{D}_{2 \mathrm{~h}}$ group, and as in the two-dimensional case it is possible to choose the completely symmetric irreducible representation of $D_{2 h}$ for the $\left|0^{\prime}\right\rangle_{\alpha},\left|\downarrow \psi^{\prime}\right\rangle_{\alpha}$ and the antisymmetric representation under plane reflexions for the $\left|\sigma^{\prime}\right\rangle_{\alpha} s$ to obtain condition (18).

8. Conclusion

We have analysed the rseg block method in the one-band Hubbard model. We have found the conditions under which the process is exact. The expression is exact here, makes no reference to an analytical or numerical result but, instead, there is a formal analogy between the original Hamiltoman and the renormalized one. We have shown how to apply the method to $d=1,2,3$ systems. Particularly in the one-dimensional case we have solved exactly the question of party of the number of sites in each block [5-7].

Acknowledgments

We wish to thank P Pfeuty for stimulating discussions and A K Bhattacharjee for careful reading of the manuscript. This work was partially supported by Ministerio de Educación y Clencia (Spain)

References

[1] Drell S D, Wenstein M and Yankielowicz S 1976 Phys Rev D 14487
[2] Pfeuty P, Julhen R and Penson K A Topics Current Phys 30
[3] Kadanoff L P 1976 Ann Phys 100359
[4] Castellam C, di Castro C and Ranninger] 1982 Nucl Phys B 20045
[5] Hirsch J E and Mazenko G F 1979 Phys Rev B 192656
[6] Hirsch J E 1980 Phys. Ret B 225259
[7] Dasgupta C and Pfeuty P 1981 J Phys C Sohd State Phys 14717
[8] Nowak E 1981 Z Phys B 45173 Zhang S 1990 Phys Rev Lett 65120
[9] Lipkin H J 1965 Lie Groups for Pedestrians (Amsterdam North-Holland)
[10] Hammermesh M 1964 Group Theory (Reading, MA Addison-Wesley)

[^0]: ${ }^{\dagger}$ It ts easy to see that if $\left.\left[Z^{-} Z^{+}, Z^{-}\right]=2 Z^{-} Z_{3} \Rightarrow Z^{-} \mid \lambda, \theta_{k}\right) x\left|\lambda, \theta_{k}^{\prime}\right\rangle$ where $\theta_{h}^{\prime}=\theta_{h}+N_{c}-N_{s}$ If we restrain the study to the case $N_{s} \geqslant N_{c}$ then $\theta_{h} \geqslant 0$ If we choose $\theta_{h=0}=N_{s}-N_{e}$ then $\theta_{h}^{\prime}=0$. This is only possible for $N_{e}=N$, but $N_{c}^{\prime}=N_{\mathrm{e}}-2$ and by hypothess was $N_{\mathrm{c}} \leqslant N_{\mathrm{s}}$, therefore $N_{\mathrm{c}}^{\prime} \leqslant N_{\mathrm{s}}-2$ It is impossible then to arrive to zero eigenvalue for θ_{α}^{\prime} so $Z^{-}\left|\sigma^{\prime}\right\rangle_{\alpha}$ must cancel For the spin case it is obvious that ($15 b$) implies $s=0$.

